Deep learning enabled multi-wavelength spatial coherence microscope for the classification of malaria-infected stages with limited labelled data size (1903.06056v1)
Abstract: Malaria is a life-threatening mosquito-borne blood disease, hence early detection is very crucial for health. The conventional method for the detection is a microscopic examination of Giemsa-stained blood smears, which needs a highly trained skilled technician. Automated classifications of different stages of malaria still a challenging task, especially having poor sensitivity in detecting the early trophozoite and late trophozoite or schizont stage with limited labelled datasize. The study aims to develop a fast, robust and fully automated system for the classification of different stages of malaria with limited data size by using the pre-trained convolutional neural networks (CNNs) as a classifier and multi-wavelength to increase the sample size. We also compare our customized CNN with other well-known CNNs and shows that our network have a comparable performance with less computational time. We believe that our proposed method can be applied to other limited labelled biological datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.