Papers
Topics
Authors
Recent
2000 character limit reached

Consistent Dialogue Generation with Self-supervised Feature Learning (1903.05759v4)

Published 13 Mar 2019 in cs.CL

Abstract: Generating responses that are consistent with the dialogue context is one of the central challenges in building engaging conversational agents. We demonstrate that neural conversation models can be geared towards generating consistent responses by maintaining certain features related to topics and personas throughout the conversation. Past work has required external supervision that exploits features such as user identities that are often unavailable. In our approach, topic and persona feature extractors are trained using a contrastive training scheme that utilizes the natural structure of dialogue data. We further adopt a feature disentangling loss which, paired with controllable response generation techniques, allows us to promote or demote certain learned topics and persona features. Evaluation results demonstrate the model's ability to capture meaningful topics and persona features. The incorporation of the learned features brings significant improvement in terms of the quality of generated responses on two dialogue datasets.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.