Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Hyperspectral Data Augmentation (1903.05580v1)

Published 13 Mar 2019 in cs.CV

Abstract: Data augmentation is a popular technique which helps improve generalization capabilities of deep neural networks. It plays a pivotal role in remote-sensing scenarios in which the amount of high-quality ground truth data is limited, and acquiring new examples is costly or impossible. This is a common problem in hyperspectral imaging, where manual annotation of image data is difficult, expensive, and prone to human bias. In this letter, we propose online data augmentation of hyperspectral data which is executed during the inference rather than before the training of deep networks. This is in contrast to all other state-of-the-art hyperspectral augmentation algorithms which increase the size (and representativeness) of training sets. Additionally, we introduce a new principal component analysis based augmentation. The experiments revealed that our data augmentation algorithms improve generalization of deep networks, work in real-time, and the online approach can be effectively combined with offline techniques to enhance the classification accuracy.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.