Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 130 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Asymmetric Residual Neural Network for Accurate Human Activity Recognition (1903.05359v3)

Published 13 Mar 2019 in cs.CV, cs.HC, and cs.LG

Abstract: Human Activity Recognition (HAR) using deep neural network has become a hot topic in human-computer interaction. Machine can effectively identify human naturalistic activities by learning from a large collection of sensor data. Activity recognition is not only an interesting research problem, but also has many real-world practical applications. Based on the success of residual networks in achieving a high level of aesthetic representation of the automatic learning, we propose a novel \textbf{A}symmetric \textbf{R}esidual \textbf{N}etwork, named ARN. ARN is implemented using two identical path frameworks consisting of (1) a short time window, which is used to capture spatial features, and (2) a long time window, which is used to capture fine temporal features. The long time window path can be made very lightweight by reducing its channel capacity, yet still being able to learn useful temporal representations for activity recognition. In this paper, we mainly focus on proposing a new model to improve the accuracy of HAR. In order to demonstrate the effectiveness of ARN model, we carried out extensive experiments on benchmark datasets (i.e., OPPORTUNITY, UniMiB-SHAR) and compared with some conventional and state-of-the-art learning-based methods. Then, we discuss the influence of networks parameters on performance to provide insights about its optimization. Results from our experiments show that ARN is effective in recognizing human activities via wearable datasets.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.