Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Optimality of Maximum Likelihood for Log-Concave Density Estimation and Bounded Convex Regression (1903.05315v4)

Published 13 Mar 2019 in math.ST, cs.LG, and stat.TH

Abstract: In this paper, we study two problems: (1) estimation of a $d$-dimensional log-concave distribution and (2) bounded multivariate convex regression with random design with an underlying log-concave density or a compactly supported distribution with a continuous density. First, we show that for all $d \ge 4$ the maximum likelihood estimators of both problems achieve an optimal risk of $\Theta_d(n{-2/(d+1)})$ (up to a logarithmic factor) in terms of squared Hellinger distance and $L_2$ squared distance, respectively. Previously, the optimality of both these estimators was known only for $d\le 3$. We also prove that the $\epsilon$-entropy numbers of the two aforementioned families are equal up to logarithmic factors. We complement these results by proving a sharp bound $\Theta_d(n{-2/(d+4)})$ on the minimax rate (up to logarithmic factors) with respect to the total variation distance. Finally, we prove that estimating a log-concave density - even a uniform distribution on a convex set - up to a fixed accuracy requires the number of samples \emph{at least} exponential in the dimension. We do that by improving the dimensional constant in the best known lower bound for the minimax rate from $2{-d}\cdot n{-2/(d+1)}$ to $c\cdot n{-2/(d+1)}$ (when $d\geq 2$).

Citations (25)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.