Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Richness of Deep Echo State Network Dynamics (1903.05174v2)

Published 12 Mar 2019 in cs.LG, cs.AI, cs.NE, and stat.ML

Abstract: Reservoir Computing (RC) is a popular methodology for the efficient design of Recurrent Neural Networks (RNNs). Recently, the advantages of the RC approach have been extended to the context of multi-layered RNNs, with the introduction of the Deep Echo State Network (DeepESN) model. In this paper, we study the quality of state dynamics in progressively higher layers of DeepESNs, using tools from the areas of information theory and numerical analysis. Our experimental results on RC benchmark datasets reveal the fundamental role played by the strength of inter-reservoir connections to increasingly enrich the representations developed in higher layers. Our analysis also gives interesting insights into the possibility of effective exploitation of training algorithms based on stochastic gradient descent in the RC field.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube