Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Distributed Hierarchical SGD Algorithm with Sparse Global Reduction (1903.05133v2)

Published 12 Mar 2019 in cs.LG, cs.DC, math.OC, and stat.ML

Abstract: Reducing communication in training large-scale machine learning applications on distributed platform is still a big challenge. To address this issue, we propose a distributed hierarchical averaging stochastic gradient descent (Hier-AVG) algorithm with infrequent global reduction by introducing local reduction. As a general type of parallel SGD, Hier-AVG can reproduce several popular synchronous parallel SGD variants by adjusting its parameters. We show that Hier-AVG with infrequent global reduction can still achieve standard convergence rate for non-convex optimization problems. In addition, we show that more frequent local averaging with more participants involved can lead to faster training convergence. By comparing Hier-AVG with another popular distributed training algorithm K-AVG, we show that through deploying local averaging with fewer number of global averaging, Hier-AVG can still achieve comparable training speed while frequently get better test accuracy. This indicates that local averaging can serve as an alternative remedy to effectively reduce communication overhead when the number of learners is large. Experimental results of Hier-AVG with several state-of-the-art deep neural nets on CIFAR-10 and IMAGENET-1K are presented to validate our analysis and show its superiority.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)