Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Open-Set Recognition Using Intra-Class Splitting (1903.04774v3)

Published 12 Mar 2019 in cs.LG and stat.ML

Abstract: This paper proposes a method to use deep neural networks as end-to-end open-set classifiers. It is based on intra-class data splitting. In open-set recognition, only samples from a limited number of known classes are available for training. During inference, an open-set classifier must reject samples from unknown classes while correctly classifying samples from known classes. The proposed method splits given data into typical and atypical normal subsets by using a closed-set classifier. This enables to model the abnormal classes by atypical normal samples. Accordingly, the open-set recognition problem is reformulated into a traditional classification problem. In addition, a closed-set regularization is proposed to guarantee a high closed-set classification performance. Intensive experiments on five well-known image datasets showed the effectiveness of the proposed method which outperformed the baselines and achieved a distinct improvement over the state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Patrick Schlachter (4 papers)
  2. Yiwen Liao (9 papers)
  3. Bin Yang (320 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.