Papers
Topics
Authors
Recent
2000 character limit reached

Deep Log-Likelihood Ratio Quantization (1903.04656v3)

Published 11 Mar 2019 in cs.LG, eess.SP, and stat.ML

Abstract: In this work, a deep learning-based method for log-likelihood ratio (LLR) lossy compression and quantization is proposed, with emphasis on a single-input single-output uncorrelated fading communication setting. A deep autoencoder network is trained to compress, quantize and reconstruct the bit log-likelihood ratios corresponding to a single transmitted symbol. Specifically, the encoder maps to a latent space with dimension equal to the number of sufficient statistics required to recover the inputs - equal to three in this case - while the decoder aims to reconstruct a noisy version of the latent representation with the purpose of modeling quantization effects in a differentiable way. Simulation results show that, when applied to a standard rate-1/2 low-density parity-check (LDPC) code, a finite precision compression factor of nearly three times is achieved when storing an entire codeword, with an incurred loss of performance lower than 0.1 dB compared to straightforward scalar quantization of the log-likelihood ratios.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.