Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Fast Registration for cross-source point clouds by using weak regional affinity and pixel-wise refinement (1903.04630v1)

Published 11 Mar 2019 in cs.CV and cs.GR

Abstract: Many types of 3D acquisition sensors have emerged in recent years and point cloud has been widely used in many areas. Accurate and fast registration of cross-source 3D point clouds from different sensors is an emerged research problem in computer vision. This problem is extremely challenging because cross-source point clouds contain a mixture of various variances, such as density, partial overlap, large noise and outliers, viewpoint changing. In this paper, an algorithm is proposed to align cross-source point clouds with both high accuracy and high efficiency. There are two main contributions: firstly, two components, the weak region affinity and pixel-wise refinement, are proposed to maintain the global and local information of 3D point clouds. Then, these two components are integrated into an iterative tensor-based registration algorithm to solve the cross-source point cloud registration problem. We conduct experiments on synthetic cross-source benchmark dataset and real cross-source datasets. Comparison with six state-of-the-art methods, the proposed method obtains both higher efficiency and accuracy.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.