Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Generative Models: Deterministic Prediction with an Application in Inverse Rendering (1903.04144v1)

Published 11 Mar 2019 in cs.CV

Abstract: Deep generative models are stochastic neural networks capable of learning the distribution of data so as to generate new samples. Conditional Variational Autoencoder (CVAE) is a powerful deep generative model aiming at maximizing the lower bound of training data log-likelihood. In the CVAE structure, there is appropriate regularizer, which makes it applicable for suitably constraining the solution space in solving ill-posed problems and providing high generalization power. Considering the stochastic prediction characteristic in CVAE, depending on the problem at hand, it is desirable to be able to control the uncertainty in CVAE predictions. Therefore, in this paper we analyze the impact of CVAE's condition on the diversity of solutions given by our designed CVAE in 3D shape inverse rendering as a prediction problem. The experimental results using Modelnet10 and Shapenet datasets show the appropriate performance of our designed CVAE and verify the hypothesis: \emph{"The more informative the conditions in terms of object pose are, the less diverse the CVAE predictions are}".

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube