Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

One-Pass Sparsified Gaussian Mixtures (1903.04056v2)

Published 10 Mar 2019 in cs.LG and stat.ML

Abstract: We present a one-pass sparsified Gaussian mixture model (SGMM). Given $N$ data points in $P$ dimensions, $X$, the model fits $K$ Gaussian distributions to $X$ and (softly) classifies each point to these clusters. After paying an up-front cost of $\mathcal{O}(NP\log P)$ to precondition the data, we subsample $Q$ entries of each data point and discard the full $P$-dimensional data. SGMM operates in $\mathcal{O}(KNQ)$ time per iteration for diagonal or spherical covariances, independent of $P$, while estimating the model parameters in the full $P$-dimensional space, making it one-pass and hence suitable for streaming data. We derive the maximum likelihood estimators for the parameters in the sparsified regime, demonstrate clustering on synthetic and real data, and show that SGMM is faster than GMM while preserving accuracy.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.