Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Uncertainty Propagation in Deep Neural Network Using Active Subspace (1903.03989v2)

Published 10 Mar 2019 in stat.ML, cs.CV, and cs.LG

Abstract: The inputs of deep neural network (DNN) from real-world data usually come with uncertainties. Yet, it is challenging to propagate the uncertainty in the input features to the DNN predictions at a low computational cost. This work employs a gradient-based subspace method and response surface technique to accelerate the uncertainty propagation in DNN. Specifically, the active subspace method is employed to identify the most important subspace in the input features using the gradient of the DNN output to the inputs. Then the response surface within that low-dimensional subspace can be efficiently built, and the uncertainty of the prediction can be acquired by evaluating the computationally cheap response surface instead of the DNN models. In addition, the subspace can help explain the adversarial examples. The approach is demonstrated in MNIST datasets with a convolutional neural network. Code is available at: https://github.com/jiweiqi/nnsubspace.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com