Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SSN: Learning Sparse Switchable Normalization via SparsestMax (1903.03793v1)

Published 9 Mar 2019 in cs.CV

Abstract: Normalization methods improve both optimization and generalization of ConvNets. To further boost performance, the recently-proposed switchable normalization (SN) provides a new perspective for deep learning: it learns to select different normalizers for different convolution layers of a ConvNet. However, SN uses softmax function to learn importance ratios to combine normalizers, leading to redundant computations compared to a single normalizer. This work addresses this issue by presenting Sparse Switchable Normalization (SSN) where the importance ratios are constrained to be sparse. Unlike $\ell_1$ and $\ell_0$ constraints that impose difficulties in optimization, we turn this constrained optimization problem into feed-forward computation by proposing SparsestMax, which is a sparse version of softmax. SSN has several appealing properties. (1) It inherits all benefits from SN such as applicability in various tasks and robustness to a wide range of batch sizes. (2) It is guaranteed to select only one normalizer for each normalization layer, avoiding redundant computations. (3) SSN can be transferred to various tasks in an end-to-end manner. Extensive experiments show that SSN outperforms its counterparts on various challenging benchmarks such as ImageNet, Cityscapes, ADE20K, and Kinetics.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.