Papers
Topics
Authors
Recent
2000 character limit reached

SSN: Learning Sparse Switchable Normalization via SparsestMax (1903.03793v1)

Published 9 Mar 2019 in cs.CV

Abstract: Normalization methods improve both optimization and generalization of ConvNets. To further boost performance, the recently-proposed switchable normalization (SN) provides a new perspective for deep learning: it learns to select different normalizers for different convolution layers of a ConvNet. However, SN uses softmax function to learn importance ratios to combine normalizers, leading to redundant computations compared to a single normalizer. This work addresses this issue by presenting Sparse Switchable Normalization (SSN) where the importance ratios are constrained to be sparse. Unlike $\ell_1$ and $\ell_0$ constraints that impose difficulties in optimization, we turn this constrained optimization problem into feed-forward computation by proposing SparsestMax, which is a sparse version of softmax. SSN has several appealing properties. (1) It inherits all benefits from SN such as applicability in various tasks and robustness to a wide range of batch sizes. (2) It is guaranteed to select only one normalizer for each normalization layer, avoiding redundant computations. (3) SSN can be transferred to various tasks in an end-to-end manner. Extensive experiments show that SSN outperforms its counterparts on various challenging benchmarks such as ImageNet, Cityscapes, ADE20K, and Kinetics.

Citations (56)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.