Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Orthogonal Estimation of Wasserstein Distances (1903.03784v2)

Published 9 Mar 2019 in stat.ML and cs.LG

Abstract: Wasserstein distances are increasingly used in a wide variety of applications in machine learning. Sliced Wasserstein distances form an important subclass which may be estimated efficiently through one-dimensional sorting operations. In this paper, we propose a new variant of sliced Wasserstein distance, study the use of orthogonal coupling in Monte Carlo estimation of Wasserstein distances and draw connections with stratified sampling, and evaluate our approaches experimentally in a range of large-scale experiments in generative modelling and reinforcement learning.

Citations (41)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.