Papers
Topics
Authors
Recent
2000 character limit reached

$φ$-FEM: a finite element method on domains defined by level-sets (1903.03703v2)

Published 9 Mar 2019 in math.NA and cs.NA

Abstract: We propose a new fictitious domain finite element method, well suited for elliptic problems posed in a domain given by a level-set function without requiring a mesh fitting the boundary. To impose the Dirichlet boundary conditions, we search the approximation to the solution as a product of a finite element function with the given level-set function, which also approximated by finite elements. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any non-standard numerical integration (on cut mesh elements or on the actual boundary). We consider the Poisson equation discretized with piecewise polynomial Lagrange finite elements of any order and prove the optimal convergence of our method in the $H1$-norm. Moreover, the discrete problem is proven to be well conditioned, \textit{i.e.} the condition number of the associated finite element matrix is of the same order as that of a standard finite element method on a comparable conforming mesh. Numerical results confirm the optimal convergence in both $H1$ and $L2$ norms.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.