Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

$φ$-FEM: a finite element method on domains defined by level-sets (1903.03703v2)

Published 9 Mar 2019 in math.NA and cs.NA

Abstract: We propose a new fictitious domain finite element method, well suited for elliptic problems posed in a domain given by a level-set function without requiring a mesh fitting the boundary. To impose the Dirichlet boundary conditions, we search the approximation to the solution as a product of a finite element function with the given level-set function, which also approximated by finite elements. Unlike other recent fictitious domain-type methods (XFEM, CutFEM), our approach does not need any non-standard numerical integration (on cut mesh elements or on the actual boundary). We consider the Poisson equation discretized with piecewise polynomial Lagrange finite elements of any order and prove the optimal convergence of our method in the $H1$-norm. Moreover, the discrete problem is proven to be well conditioned, \textit{i.e.} the condition number of the associated finite element matrix is of the same order as that of a standard finite element method on a comparable conforming mesh. Numerical results confirm the optimal convergence in both $H1$ and $L2$ norms.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.