Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

SAT-based Compressive Sensing (1903.03650v2)

Published 6 Mar 2019 in cs.IT and math.IT

Abstract: We propose to reduce the original well-posed problem of compressive sensing to weighted-MAX-SAT. Compressive sensing is a novel randomized data acquisition approach that linearly samples sparse or compressible signals at a rate much below the Nyquist-Shannon sampling rate. The original problem of compressive sensing in sparse recovery is NP-hard; therefore, in addition to restrictions for the uniqueness of the sparse solution, the coding matrix has also to satisfy additional stringent constraints -usually the restricted isometry property (RIP)- so we can handle it by its convex or nonconvex relaxations. In practice, such constraints are not only intractable to be verified but also invalid in broad applications. We first divide the well-posed problem of compressive sensing into relaxed sub-problems and represent them as separate SAT instances in conjunctive normal form (CNF). After merging the resulting sub-problems, we assign weights to all clauses in such a way that the aggregated weighted-MAX-SAT can guarantee successful recovery of the original signal. The only requirement in our approach is the solution uniqueness of the associated problems, which is notably looser. As a proof of concept, we demonstrate the applicability of our approach in tackling the original problem of binary compressive sensing with binary design matrices. Experimental results demonstrate the supremacy of the proposed SAT-based compressive sensing over the $\ell_1$-minimization in the robust recovery of sparse binary signals. SAT-based compressive sensing on average requires 8.3% fewer measurements for exact recovery of highly sparse binary signals ($s/N\approx 0.1$). When $s/N \approx 0.5$, the $\ell_1$-minimization on average requires 22.2% more measurements for exact reconstruction of the binary signals. Thus, the proposed SAT-based compressive sensing is less sensitive to the sparsity of the original signals.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.