Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Understanding Sparse JL for Feature Hashing (1903.03605v2)

Published 8 Mar 2019 in stat.ML, cs.DS, cs.LG, and math.PR

Abstract: Feature hashing and other random projection schemes are commonly used to reduce the dimensionality of feature vectors. The goal is to efficiently project a high-dimensional feature vector living in $\mathbb{R}n$ into a much lower-dimensional space $\mathbb{R}m$, while approximately preserving Euclidean norm. These schemes can be constructed using sparse random projections, for example using a sparse Johnson-Lindenstrauss (JL) transform. A line of work introduced by Weinberger et. al (ICML '09) analyzes the accuracy of sparse JL with sparsity 1 on feature vectors with small $\ell_\infty$-to-$\ell_2$ norm ratio. Recently, Freksen, Kamma, and Larsen (NeurIPS '18) closed this line of work by proving a tight tradeoff between $\ell_\infty$-to-$\ell_2$ norm ratio and accuracy for sparse JL with sparsity $1$. In this paper, we demonstrate the benefits of using sparsity $s$ greater than $1$ in sparse JL on feature vectors. Our main result is a tight tradeoff between $\ell_\infty$-to-$\ell_2$ norm ratio and accuracy for a general sparsity $s$, that significantly generalizes the result of Freksen et. al. Our result theoretically demonstrates that sparse JL with $s > 1$ can have significantly better norm-preservation properties on feature vectors than sparse JL with $s = 1$; we also empirically demonstrate this finding.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.