Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Understanding Sparse JL for Feature Hashing (1903.03605v2)

Published 8 Mar 2019 in stat.ML, cs.DS, cs.LG, and math.PR

Abstract: Feature hashing and other random projection schemes are commonly used to reduce the dimensionality of feature vectors. The goal is to efficiently project a high-dimensional feature vector living in $\mathbb{R}n$ into a much lower-dimensional space $\mathbb{R}m$, while approximately preserving Euclidean norm. These schemes can be constructed using sparse random projections, for example using a sparse Johnson-Lindenstrauss (JL) transform. A line of work introduced by Weinberger et. al (ICML '09) analyzes the accuracy of sparse JL with sparsity 1 on feature vectors with small $\ell_\infty$-to-$\ell_2$ norm ratio. Recently, Freksen, Kamma, and Larsen (NeurIPS '18) closed this line of work by proving a tight tradeoff between $\ell_\infty$-to-$\ell_2$ norm ratio and accuracy for sparse JL with sparsity $1$. In this paper, we demonstrate the benefits of using sparsity $s$ greater than $1$ in sparse JL on feature vectors. Our main result is a tight tradeoff between $\ell_\infty$-to-$\ell_2$ norm ratio and accuracy for a general sparsity $s$, that significantly generalizes the result of Freksen et. al. Our result theoretically demonstrates that sparse JL with $s > 1$ can have significantly better norm-preservation properties on feature vectors than sparse JL with $s = 1$; we also empirically demonstrate this finding.

Citations (17)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)