Emergent Mind

Understanding Sparse JL for Feature Hashing

(1903.03605)
Published Mar 8, 2019 in stat.ML , cs.DS , cs.LG , and math.PR

Abstract

Feature hashing and other random projection schemes are commonly used to reduce the dimensionality of feature vectors. The goal is to efficiently project a high-dimensional feature vector living in $\mathbb{R}n$ into a much lower-dimensional space $\mathbb{R}m$, while approximately preserving Euclidean norm. These schemes can be constructed using sparse random projections, for example using a sparse Johnson-Lindenstrauss (JL) transform. A line of work introduced by Weinberger et. al (ICML '09) analyzes the accuracy of sparse JL with sparsity 1 on feature vectors with small $\ell\infty$-to-$\ell2$ norm ratio. Recently, Freksen, Kamma, and Larsen (NeurIPS '18) closed this line of work by proving a tight tradeoff between $\ell\infty$-to-$\ell2$ norm ratio and accuracy for sparse JL with sparsity $1$. In this paper, we demonstrate the benefits of using sparsity $s$ greater than $1$ in sparse JL on feature vectors. Our main result is a tight tradeoff between $\ell\infty$-to-$\ell2$ norm ratio and accuracy for a general sparsity $s$, that significantly generalizes the result of Freksen et. al. Our result theoretically demonstrates that sparse JL with $s > 1$ can have significantly better norm-preservation properties on feature vectors than sparse JL with $s = 1$; we also empirically demonstrate this finding.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.