Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 29 tok/s Pro
2000 character limit reached

Unsupervised Medical Image Translation Using Cycle-MedGAN (1903.03374v1)

Published 8 Mar 2019 in cs.CV

Abstract: Image-to-image translation is a new field in computer vision with multiple potential applications in the medical domain. However, for supervised image translation frameworks, co-registered datasets, paired in a pixel-wise sense, are required. This is often difficult to acquire in realistic medical scenarios. On the other hand, unsupervised translation frameworks often result in blurred translated images with unrealistic details. In this work, we propose a new unsupervised translation framework which is titled Cycle-MedGAN. The proposed framework utilizes new non-adversarial cycle losses which direct the framework to minimize the textural and perceptual discrepancies in the translated images. Qualitative and quantitative comparisons against other unsupervised translation approaches demonstrate the performance of the proposed framework for PET-CT translation and MR motion correction.

Citations (103)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.