Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Cache-Oblivious Priority Queues with Decrease-Key and Applications to Graph Algorithms (1903.03147v3)

Published 7 Mar 2019 in cs.DS

Abstract: We present priority queues in the cache-oblivious external memory model with block size $B$ and main memory size $M$ that support on $N$ elements, operation \textsc{UPDATE} (combination of \textsc{INSERT} and \textsc{DECREASEKEY}) in $O \left(\frac{1}{B}\log_{\frac{\lambda}{B}} \frac{N}{B}\right)$ amortized I/Os and operations \textsc{EXTRACT-MIN} and \textsc{DELETE} in $O \left(\lceil \frac{\lambda{\varepsilon}}{B} \log_{\frac{\lambda}{B}} \frac{N}{B} \rceil \log_{\frac{\lambda}{B}} \frac{N}{B}\right)$ amortized I/Os, using $O \left(\frac{N}{B}\log_{\frac{\lambda}{B}} \frac{N}{B}\right)$ blocks, for a user-defined parameter $\lambda \in [2, N ]$ and any real $\varepsilon \in (0,1)$. Our result improves upon previous I/O-efficient cache-oblivious and cache-aware priority queues [Chowdhury and Ramachandran, TALG 2018], [Brodal et al., SWAT 2004], [Kumar and Schwabe, SPDP 1996], [Arge et al., SICOMP 2007], [Fadel et al., TCS 1999]. We also present buffered repository trees that support on a multi-set of $N$ elements, operation \textsc{INSERT} in $O \left(\frac{1}{B}\log_{\frac{\lambda}{B}} \frac{N}{B}\right)$ I/Os and operation \textsc{EXTRACT} on $K$ extracted elements in $O \left(\frac{\lambda{\varepsilon}}{B} \log_{\frac{\lambda}{B}} \frac{N}{B} + \frac{K}{B}\right)$ amortized I/Os, using $O \left(\frac{N}{B}\right)$ blocks, improving previous cache-aware and cache-oblivious results [Arge et al., SICOMP '07], [Buchsbaum et al., SODA '00]. In the cache-oblivious model, for $\lambda = O \left(E/V\right)$, we achieve $O \left(\frac{E}{B}\log_{\frac{E}{V B}} \frac{E}{B}\right)$ I/Os for single-source shortest paths, depth-first search and breadth-first search algorithms on massive directed dense graphs $(V,E)$. Our algorithms are I/O-optimal for $E/V = \Omega (M)$ (and in the cache-aware setting for $\lambda = O(M)$).

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.