Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Image Restoration by Combined Order Regularization with Optimal Spatial Adaptation (1903.03133v3)

Published 7 Mar 2019 in eess.IV

Abstract: Total Variation (TV) and related extensions have been popular in image restoration due to their robust performance and wide applicability. While the original formulation is still relevant after two decades of extensive research, its extensions that combine derivatives of first- and second-order are now being explored for better performance, with examples being Combined Order TV (COTV) and Total Generalized Variation (TGV). As an improvement over such multi-order convex formulations, we propose a novel non-convex regularization functional which adaptively combines Hessian-Schatten (HS) norm and first order TV (TV1) functionals with spatially varying weight. This adaptive weight itself is controlled by another regularization term; the total cost becomes the sum of this adaptively weighted HS-TV1 term, the regularization term for the adaptive weight, and the data-fitting term. The reconstruction is obtained by jointly minimizing w.r.t. the required image and the adaptive weight. We construct a block coordinate descent method for this minimization with proof of convergence, which alternates between minimization w.r.t. the required image and the adaptive weights. We derive exact computational formula for minimization w.r.t. the adaptive weight, and construct an ADMM algorithm for minimization w.r.t. to the required image. We compare the proposed method using image recovery examples including MRI reconstruction and microscopy deconvolution.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube