Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Smoothing $\mathcal{L}^2$ gradients in iterative regularization (1903.03130v6)

Published 7 Mar 2019 in math.NA and cs.NA

Abstract: Connected with the rise of interest in inverse problems is the development and analysis of regularization methods, which are a necessity due to the ill-posedness of inverse problems. Tikhonov-type regularization methods are very popular in this regard. However, its direct implementation for large-scale linear or non-linear problems is a non-trivial task. In such scenarios, iterative regularization methods usually serve as a better alternative. In this paper we propose a new iterative regularization method which uses descent directions, different from the usual gradient direction, that enable a more smoother and effective recovery than the later. This is achieved by transforming the original noisy gradient, via a smoothing operator, to a smoother gradient, which is more robust to the noise present in the data. It is also shown that this technique is very beneficial when dealing with data having large noise level. To illustrate the computational efficiency of this method we apply it to numerically solve some classical integral inverse problems, including image deblurring and tomography problems, and compare the results with certain standard regularization methods, such as Tikhonov, TV, CGLS, etc.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube