Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Intelligent Knowledge Distribution: Constrained-Action POMDPs for Resource-Aware Multi-Agent Communication (1903.03086v1)

Published 7 Mar 2019 in cs.MA

Abstract: This paper addresses a fundamental question of multi-agent knowledge distribution: what information should be sent to whom and when, with the limited resources available to each agent? Communication requirements for multi-agent systems can be rather high when an accurate picture of the environment and the state of other agents must be maintained. To reduce the impact of multi-agent coordination on networked systems, e.g., power and bandwidth, this paper introduces two concepts for partially observable Markov decision processes (POMDPs): 1) action-based constraints which yield constrained-action POMDPs (CA-POMDPs); and 2) soft probabilistic constraint satisfaction for the resulting infinite-horizon controllers. To enable constraint analysis over an infinite horizon, an unconstrained policy is first represented as a Finite State Controller (FSC) and optimized with policy iteration. The FSC representation then allows for a combination of Markov chain Monte Carlo and discrete optimization to improve the probabilistic constraint satisfaction of the controller while minimizing the impact to the value function. Within the CA-POMDP framework we then propose Intelligent Knowledge Distribution (IKD) which yields per-agent policies for distributing knowledge between agents subject to interaction constraints. Finally, the CA-POMDP and IKD concepts are validated using an asset tracking problem where multiple unmanned aerial vehicles (UAVs) with heterogeneous sensors collaborate to localize a ground asset to assist in avoiding unseen obstacles in a disaster area. The IKD model was able to maintain asset tracking through multi-agent communications while only violating soft power and bandwidth constraints 3% of the time, while greedy and naive approaches violated constraints more than 60% of the time.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.