Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Learning Abstract Representations for Locomotion Planning in High-dimensional State Spaces (1903.02308v1)

Published 6 Mar 2019 in cs.RO

Abstract: Ground robots which are able to navigate a variety of terrains are needed in many domains. One of the key aspects is the capability to adapt to the ground structure, which can be realized through movable body parts coming along with additional degrees of freedom (DoF). However, planning respective locomotion is challenging since suitable representations result in large state spaces. Employing an additional abstract representation---which is coarser, lower-dimensional, and semantically enriched---can support the planning. While a desired robot representation and action set of such an abstract representation can be easily defined, the cost function requires large tuning efforts. We propose a method to represent the cost function as a CNN. Training of the network is done on generated artificial data, while it generalizes well to the abstraction of real world scenes. We further apply our method to the problem of search-based planning of hybrid driving-stepping locomotion. The abstract representation is used as a powerful informed heuristic which accelerates planning by multiple orders of magnitude.

Citations (10)

Summary

We haven't generated a summary for this paper yet.