Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring Mixed Integer Programming Reformulations for Virtual Machine Placement with Disk Anti-Colocation Constraints (1903.02139v1)

Published 6 Mar 2019 in cs.DC

Abstract: One of the important problems for datacenter resource management is to place virtual machines (VMs) to physical machines (PMs) such that certain cost, profit or performance objective is optimized, subject to various constraints. In this paper, we consider an interesting and difficult VM placement problem with disk anti-colocation constraints: a VM's virtual disks should be spread out across the physical disks of its assigned PM. For solutions, we use the mixed integer programming (MIP) formulations and algorithms. However, a challenge is the potentially long computation time of the MIP algorithms. In this paper, we explore how reformulation of the problem can help to reduce the computation time. We develop two reformulations, by redefining the variables, for our VM placement problem and evaluate the computation time of all three formulations. We show that they have vastly different computation time. All three formulations can be useful, but for different problem instances. They all should be kept in the toolbox for tackling the problem. Out of the three, formulation COMB is especially flexible and versatile, and it can solve large problem instances.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube