Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On finite width questionable representations of orders (1903.02028v7)

Published 5 Mar 2019 in math.CO, cs.DM, and cs.LO

Abstract: In this article, we study "questionable representations" of (partial or total) orders, introduced in our previous article "A class of orders with linear? time sorting algorithm". (Later, we consider arbitrary binary functional/relational structures instead of orders.) A "question" is the first difference between two sequences (with ordinal index) of elements of orders/sets. In finite width "questionable representations" of an order O, comparison can be solved by looking at the "question" that compares elements of a finite order O'. A corollary of a theorem by Cantor (1895)is that all countable total orders have a binary (width 2) questionable representation. We find new classes of orders on which testing isomorphism or counting the number of linear extensions can be done in polynomial time. We also present a generalization of questionable-width, called balanced tree-questionable-width, and show that if a class of binary structures has bounded tree-width or clique-width, then it has bounded balanced tree-questionable-width. But there are classes of graphs of bounded balanced tree-questionable-width and unbounded tree-width or clique-width.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)