Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Faster Biclique Mining in Near-Bipartite Graphs (1903.01538v1)

Published 4 Mar 2019 in cs.DS

Abstract: Identifying dense bipartite subgraphs is a common graph data mining task. Many applications focus on the enumeration of all maximal bicliques (MBs), though sometimes the stricter variant of maximal induced bicliques (MIBs) is of interest. Recent work of Kloster et al. introduced a MIB-enumeration approach designed for "near-bipartite" graphs, where the runtime is parameterized by the size k of an odd cycle transversal (OCT), a vertex set whose deletion results in a bipartite graph. Their algorithm was shown to outperform the previously best known algorithm even when k was logarithmic in |V|. In this paper, we introduce two new algorithms optimized for near-bipartite graphs - one which enumerates MIBs in time O(M_I |V||E| k), and another based on the approach of Alexe et al. which enumerates MBs in time O(M_B |V||E| k), where M_I and M_B denote the number of MIBs and MBs in the graph, respectively. We implement all of our algorithms in open-source C++ code and experimentally verify that the OCT-based approaches are faster in practice than the previously existing algorithms on graphs with a wide variety of sizes, densities, and OCT decompositions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.