Making the Dynamic Time Warping Distance Warping-Invariant (1903.01454v2)
Abstract: The literature postulates that the dynamic time warping (dtw) distance can cope with temporal variations but stores and processes time series in a form as if the dtw-distance cannot cope with such variations. To address this inconsistency, we first show that the dtw-distance is not warping-invariant. The lack of warping-invariance contributes to the inconsistency mentioned above and to a strange behavior. To eliminate these peculiarities, we convert the dtw-distance to a warping-invariant semi-metric, called time-warp-invariant (twi) distance. Empirical results suggest that the error rates of the twi and dtw nearest-neighbor classifier are practically equivalent in a Bayesian sense. However, the twi-distance requires less storage and computation time than the dtw-distance for a broad range of problems. These results challenge the current practice of applying the dtw-distance in nearest-neighbor classification and suggest the proposed twi-distance as a more efficient and consistent option.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.