Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Generalizing Graph Convolutional Neural Networks with Edge-Variant Recursions on Graphs (1903.01298v1)

Published 4 Mar 2019 in cs.LG, eess.SP, and stat.ML

Abstract: This paper reviews graph convolutional neural networks (GCNNs) through the lens of edge-variant graph filters. The edge-variant graph filter is a finite order, linear, and local recursion that allows each node, in each iteration, to weigh differently the information of its neighbors. By exploiting this recursion, we formulate a general framework for GCNNs which considers state-of-the-art solutions as particular cases. This framework results useful to i) understand the tradeoff between local detail and the number of parameters of each solution and ii) provide guidelines for developing a myriad of novel approaches that can be implemented locally in the vertex domain. One of such approaches is presented here showing superior performance w.r.t. current alternatives in graph signal classification problems.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.