Papers
Topics
Authors
Recent
2000 character limit reached

Traditional Machine Learning for Pitch Detection (1903.01290v1)

Published 4 Mar 2019 in cs.SD, cs.CL, and eess.AS

Abstract: Pitch detection is a fundamental problem in speech processing as F0 is used in a large number of applications. Recent articles have proposed deep learning for robust pitch tracking. In this paper, we consider voicing detection as a classification problem and F0 contour estimation as a regression problem. For both tasks, acoustic features from multiple domains and traditional machine learning methods are used. The discrimination power of existing and proposed features is assessed through mutual information. Multiple supervised and unsupervised approaches are compared. A significant relative reduction of voicing errors over the best baseline is obtained: 20% with the best clustering method (K-means) and 45% with a Multi-Layer Perceptron. For F0 contour estimation, the benefits of regression techniques are limited though. We investigate whether those objective gains translate in a parametric synthesis task. Clear perceptual preferences are observed for the proposed approach over two widely-used baselines (RAPT and DIO).

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.