Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Anytime Online-to-Batch Conversions, Optimism, and Acceleration (1903.00974v1)

Published 3 Mar 2019 in stat.ML, cs.LG, and math.OC

Abstract: A standard way to obtain convergence guarantees in stochastic convex optimization is to run an online learning algorithm and then output the average of its iterates: the actual iterates of the online learning algorithm do not come with individual guarantees. We close this gap by introducing a black-box modification to any online learning algorithm whose iterates converge to the optimum in stochastic scenarios. We then consider the case of smooth losses, and show that combining our approach with optimistic online learning algorithms immediately yields a fast convergence rate of $O(L/T{3/2}+\sigma/\sqrt{T})$ on $L$-smooth problems with $\sigma2$ variance in the gradients. Finally, we provide a reduction that converts any adaptive online algorithm into one that obtains the optimal accelerated rate of $\tilde O(L/T2 + \sigma/\sqrt{T})$, while still maintaining $\tilde O(1/\sqrt{T})$ convergence in the non-smooth setting. Importantly, our algorithms adapt to $L$ and $\sigma$ automatically: they do not need to know either to obtain these rates.

Citations (7)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)