Papers
Topics
Authors
Recent
2000 character limit reached

End-to-End Game-Focused Learning of Adversary Behavior in Security Games (1903.00958v2)

Published 3 Mar 2019 in cs.GT and cs.LG

Abstract: Stackelberg security games are a critical tool for maximizing the utility of limited defense resources to protect important targets from an intelligent adversary. Motivated by green security, where the defender may only observe an adversary's response to defense on a limited set of targets, we study the problem of learning a defense that generalizes well to a new set of targets with novel feature values and combinations. Traditionally, this problem has been addressed via a two-stage approach where an adversary model is trained to maximize predictive accuracy without considering the defender's optimization problem. We develop an end-to-end game-focused approach, where the adversary model is trained to maximize a surrogate for the defender's expected utility. We show both in theory and experimental results that our game-focused approach achieves higher defender expected utility than the two-stage alternative when there is limited data.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.