Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conditional Density Estimation with Neural Networks: Best Practices and Benchmarks (1903.00954v2)

Published 3 Mar 2019 in stat.ML, cs.LG, q-fin.CP, and q-fin.ST

Abstract: Given a set of empirical observations, conditional density estimation aims to capture the statistical relationship between a conditional variable $\mathbf{x}$ and a dependent variable $\mathbf{y}$ by modeling their conditional probability $p(\mathbf{y}|\mathbf{x})$. The paper develops best practices for conditional density estimation for finance applications with neural networks, grounded on mathematical insights and empirical evaluations. In particular, we introduce a noise regularization and data normalization scheme, alleviating problems with over-fitting, initialization and hyper-parameter sensitivity of such estimators. We compare our proposed methodology with popular semi- and non-parametric density estimators, underpin its effectiveness in various benchmarks on simulated and Euro Stoxx 50 data and show its superior performance. Our methodology allows to obtain high-quality estimators for statistical expectations of higher moments, quantiles and non-linear return transformations, with very little assumptions about the return dynamic.

Citations (69)

Summary

We haven't generated a summary for this paper yet.