Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 169 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Practical Prediction of Human Movements Across Device Types and Spatiotemporal Granularities (1903.00951v1)

Published 3 Mar 2019 in cs.NI

Abstract: Understanding and predicting mobility are essential for the design and evaluation of future mobile edge caching and networking. Consequently, research on prediction of human mobility has drawn significant attention in the last decade. Employing information-theoretic concepts and machine learning methods, earlier research has shown evidence that human behavior can be highly predictable. Despite existing studies, more investigations are needed to capture intrinsic mobility characteristics constraining predictability, and to explore more dimensions (e.g. device types) and spatio-temporal granularities, especially with the change in human behavior and technology. We analyze extensive longitudinal datasets with fine spatial granularity (AP level) covering 16 months. The study reveals device type as an important factor affecting predictability. Ultra-portable devices such as smartphones have "on-the-go" mode of usage (and hence dubbed "Flutes"), whereas laptops are "sit-to-use" (dubbed "Cellos"). The goal of this study is to investigate practical prediction mechanisms to quantify predictability as an aspect of human mobility modeling, across time, space and device types. We apply our systematic analysis to wireless traces from a large university campus. We compare several algorithms using varying degrees of temporal and spatial granularity for the two modes of devices; Flutes vs. Cellos. Through our analysis, we quantify how the mobility of Flutes is less predictable than the mobility of Cellos. In addition, this pattern is consistent across various spatio-temporal granularities, and for different methods (Markov chains, neural networks/deep learning, entropy-based estimators). This work substantiates the importance of predictability as an essential aspect of human mobility, with direct application in predictive caching, user behavior modeling and mobility simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.