Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Structural Supervision Improves Learning of Non-Local Grammatical Dependencies (1903.00943v2)

Published 3 Mar 2019 in cs.CL

Abstract: State-of-the-art LSTM LLMs trained on large corpora learn sequential contingencies in impressive detail and have been shown to acquire a number of non-local grammatical dependencies with some success. Here we investigate whether supervision with hierarchical structure enhances learning of a range of grammatical dependencies, a question that has previously been addressed only for subject-verb agreement. Using controlled experimental methods from psycholinguistics, we compare the performance of word-based LSTM models versus two models that represent hierarchical structure and deploy it in left-to-right processing: Recurrent Neural Network Grammars (RNNGs) (Dyer et al., 2016) and a incrementalized version of the Parsing-as-Language-Modeling configuration from Chariak et al., (2016). Models are tested on a diverse range of configurations for two classes of non-local grammatical dependencies in English---Negative Polarity licensing and Filler--Gap Dependencies. Using the same training data across models, we find that structurally-supervised models outperform the LSTM, with the RNNG demonstrating best results on both types of grammatical dependencies and even learning many of the Island Constraints on the filler--gap dependency. Structural supervision thus provides data efficiency advantages over purely string-based training of neural LLMs in acquiring human-like generalizations about non-local grammatical dependencies.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.