Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Model-Driven Stack-Based Fully Convolutional Network for Pancreas Segmentation (1903.00832v3)

Published 3 Mar 2019 in cs.CV

Abstract: The irregular geometry and high inter-slice variability in computerized tomography (CT) scans of the human pancreas make an accurate segmentation of this crucial organ a challenging task for existing data-driven deep learning methods. To address this problem, we present a novel model-driven stack-based fully convolutional network with a sliding window fusion algorithm for pancreas segmentation, termed MDS-Net. The MDS-Net's cost function includes a data approximation term and a prior knowledge regularization term combined with a stack scheme for capturing and fusing the two-dimensional (2D) and local three-dimensional (3D) context information. Specifically, 3D CT scans are divided into multiple stacks to capture the local spatial context feature. To highlight the importance of single slices, the inter-slice relationships in the stack data are also incorporated in the MDS-Net framework. For implementing this proposed model-driven method, we create a stack-based U-Net architecture and successfully derive its back-propagation procedure for end-to-end training. Furthermore, a sliding window fusion algorithm is utilized to improve the consistency of adjacent CT slices and intra-stack. Finally, extensive quantitative assessments on the NIH Pancreas-CT dataset demonstrated higher pancreatic segmentation accuracy and reliability of MDS-Net compared to other state-of-the-art methods.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.