A Model-Driven Stack-Based Fully Convolutional Network for Pancreas Segmentation (1903.00832v3)
Abstract: The irregular geometry and high inter-slice variability in computerized tomography (CT) scans of the human pancreas make an accurate segmentation of this crucial organ a challenging task for existing data-driven deep learning methods. To address this problem, we present a novel model-driven stack-based fully convolutional network with a sliding window fusion algorithm for pancreas segmentation, termed MDS-Net. The MDS-Net's cost function includes a data approximation term and a prior knowledge regularization term combined with a stack scheme for capturing and fusing the two-dimensional (2D) and local three-dimensional (3D) context information. Specifically, 3D CT scans are divided into multiple stacks to capture the local spatial context feature. To highlight the importance of single slices, the inter-slice relationships in the stack data are also incorporated in the MDS-Net framework. For implementing this proposed model-driven method, we create a stack-based U-Net architecture and successfully derive its back-propagation procedure for end-to-end training. Furthermore, a sliding window fusion algorithm is utilized to improve the consistency of adjacent CT slices and intra-stack. Finally, extensive quantitative assessments on the NIH Pancreas-CT dataset demonstrated higher pancreatic segmentation accuracy and reliability of MDS-Net compared to other state-of-the-art methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.