Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Monadic Decomposability of Regular Relations (1903.00728v3)

Published 2 Mar 2019 in cs.FL

Abstract: Monadic decomposibility --- the ability to determine whether a formula in a given logical theory can be decomposed into a boolean combination of monadic formulas --- is a powerful tool for devising a decision procedure for a given logical theory. In this paper, we revisit a classical decision problem in automata theory: given a regular (a.k.a. synchronized rational) relation, determine whether it is recognizable, i.e., it has a monadic decomposition (that is, a representation as a boolean combination of cartesian products of regular languages). Regular relations are expressive formalisms which, using an appropriate string encoding, can capture relations definable in Presburger Arithmetic. In fact, their expressive power coincide with relations definable in a universal automatic structure; equivalently, those definable by finite set interpretations in WS1S (Weak Second Order Theory of One Successor). Determining whether a regular relation admits a recognizable relation was known to be decidable (and in exponential time for binary relations), but its precise complexity still hitherto remains open. Our main contribution is to fully settle the complexity of this decision problem by developing new techniques employing infinite Ramsey theory. The complexity for DFA (resp. NFA) representations of regular relations is shown to be NLOGSPACE-complete (resp. \PSPACE-complete).

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube