Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

GAP: Generalizable Approximate Graph Partitioning Framework (1903.00614v1)

Published 2 Mar 2019 in cs.LG and stat.ML

Abstract: Graph partitioning is the problem of dividing the nodes of a graph into balanced partitions while minimizing the edge cut across the partitions. Due to its combinatorial nature, many approximate solutions have been developed, including variants of multi-level methods and spectral clustering. We propose GAP, a Generalizable Approximate Partitioning framework that takes a deep learning approach to graph partitioning. We define a differentiable loss function that represents the partitioning objective and use backpropagation to optimize the network parameters. Unlike baselines that redo the optimization per graph, GAP is capable of generalization, allowing us to train models that produce performant partitions at inference time, even on unseen graphs. Furthermore, because we learn the representation of the graph while jointly optimizing for the partitioning loss function, GAP can be easily tuned for a variety of graph structures. We evaluate the performance of GAP on graphs of varying sizes and structures, including graphs of widely used machine learning models (e.g., ResNet, VGG, and Inception-V3), scale-free graphs, and random graphs. We show that GAP achieves competitive partitions while being up to 100 times faster than the baseline and generalizes to unseen graphs.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.