Papers
Topics
Authors
Recent
2000 character limit reached

A Reachability Method for Verifying Dynamical Systems with Deep Neural Network Controllers (1903.00520v3)

Published 1 Mar 2019 in cs.SY

Abstract: Deep neural networks can be trained to be efficient and effective controllers for dynamical systems; however, the mechanics of deep neural networks are complex and difficult to guarantee. This work presents a general approach for providing guarantees for deep neural network controllers over multiple time steps using a combination of reachability methods and open source neural network verification tools. By bounding the system dynamics and neural network outputs, the set of reachable states can be over-approximated to provide a guarantee that the system will never reach states outside the set. The method is demonstrated on the mountain car problem as well as an aircraft collision avoidance problem. Results show that this approach can provide neural network guarantees given a bounded dynamic model.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.