Papers
Topics
Authors
Recent
2000 character limit reached

Infinite Automaton Semigroups and Groups Have Infinite Orbits

Published 1 Mar 2019 in cs.FL and math.GR | (1903.00222v3)

Abstract: We show that an automaton group or semigroup is infinite if and only if it admits an $\omega$-word (i. e. a right-infinite word) with an infinite orbit, which solves an open problem communicated to us by Ievgen V. Bondarenko. In fact, we prove a generalization of this result, which can be applied to show that finitely generated subgroups and subsemigroups as well as principal left ideals of automaton semigroups are infinite if and only if there is an $\omega$ -word with an infinite orbit under their action. The proof also shows some interesting connections between the automaton semigroup and its dual. Finally, our result is interesting from an algorithmic perspective as it allows for a reformulation of the finiteness problem for automaton groups and semigroups.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.