Papers
Topics
Authors
Recent
2000 character limit reached

Chinese-Japanese Unsupervised Neural Machine Translation Using Sub-character Level Information (1903.00149v1)

Published 1 Mar 2019 in cs.CL

Abstract: Unsupervised neural machine translation (UNMT) requires only monolingual data of similar language pairs during training and can produce bi-directional translation models with relatively good performance on alphabetic languages (Lample et al., 2018). However, no research has been done to logographic language pairs. This study focuses on Chinese-Japanese UNMT trained by data containing sub-character (ideograph or stroke) level information which is decomposed from character level data. BLEU scores of both character and sub-character level systems were compared against each other and the results showed that despite the effectiveness of UNMT on character level data, sub-character level data could further enhance the performance, in which the stroke level system outperformed the ideograph level system.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.