Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Speeding up Deep Learning with Transient Servers (1903.00045v2)

Published 28 Feb 2019 in cs.PF, cs.CV, cs.DC, and cs.LG

Abstract: Distributed training frameworks, like TensorFlow, have been proposed as a means to reduce the training time of deep learning models by using a cluster of GPU servers. While such speedups are often desirable---e.g., for rapidly evaluating new model designs---they often come with significantly higher monetary costs due to sublinear scalability. In this paper, we investigate the feasibility of using training clusters composed of cheaper transient GPU servers to get the benefits of distributed training without the high costs. We conduct the first large-scale empirical analysis, launching more than a thousand GPU servers of various capacities, aimed at understanding the characteristics of transient GPU servers and their impact on distributed training performance. Our study demonstrates the potential of transient servers with a speedup of 7.7X with more than 62.9% monetary savings for some cluster configurations. We also identify a number of important challenges and opportunities for redesigning distributed training frameworks to be transient-aware. For example, the dynamic cost and availability characteristics of transient servers suggest the need for frameworks to dynamically change cluster configurations to best take advantage of current conditions.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.