Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Catalyst.RL: A Distributed Framework for Reproducible RL Research (1903.00027v1)

Published 28 Feb 2019 in cs.LG and stat.ML

Abstract: Despite the recent progress in deep reinforcement learning field (RL), and, arguably because of it, a large body of work remains to be done in reproducing and carefully comparing different RL algorithms. We present catalyst.RL, an open source framework for RL research with a focus on reproducibility and flexibility. Main features of our library include large-scale asynchronous distributed training, easy-to-use configuration files with the complete list of hyperparameters for the particular experiments, efficient implementations of various RL algorithms and auxiliary tricks, such as frame stacking, n-step returns, value distributions, etc. To vindicate the usefulness of our framework, we evaluate it on a range of benchmarks in a continuous control, as well as on the task of developing a controller to enable a physiologically-based human model with a prosthetic leg to walk and run. The latter task was introduced at NeurIPS 2018 AI for Prosthetics Challenge, where our team took the 3rd place, capitalizing on the ability of catalyst.RL to train high-quality and sample-efficient RL agents.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.