Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Citation Needed: A Taxonomy and Algorithmic Assessment of Wikipedia's Verifiability (1902.11116v1)

Published 28 Feb 2019 in cs.CY, cs.CL, and cs.DL

Abstract: Wikipedia is playing an increasingly central role on the web,and the policies its contributors follow when sourcing and fact-checking content affect million of readers. Among these core guiding principles, verifiability policies have a particularly important role. Verifiability requires that information included in a Wikipedia article be corroborated against reliable secondary sources. Because of the manual labor needed to curate and fact-check Wikipedia at scale, however, its contents do not always evenly comply with these policies. Citations (i.e. reference to external sources) may not conform to verifiability requirements or may be missing altogether, potentially weakening the reliability of specific topic areas of the free encyclopedia. In this paper, we aim to provide an empirical characterization of the reasons why and how Wikipedia cites external sources to comply with its own verifiability guidelines. First, we construct a taxonomy of reasons why inline citations are required by collecting labeled data from editors of multiple Wikipedia language editions. We then collect a large-scale crowdsourced dataset of Wikipedia sentences annotated with categories derived from this taxonomy. Finally, we design and evaluate algorithmic models to determine if a statement requires a citation, and to predict the citation reason based on our taxonomy. We evaluate the robustness of such models across different classes of Wikipedia articles of varying quality, as well as on an additional dataset of claims annotated for fact-checking purposes.

Citations (45)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.