Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

PixelSteganalysis: Destroying Hidden Information with a Low Degree of Visual Degradation (1902.11113v2)

Published 30 Jan 2019 in cs.MM, cs.CR, and cs.LG

Abstract: Steganography is the science of unnoticeably concealing a secret message within a certain image, called a cover image. The cover image with the secret message is called a stego image. Steganography is commonly used for illegal purposes such as terrorist activities and pornography. To thwart covert communications and transactions, attacking algorithms against steganography, called steganalysis, exist. Currently, there are many studies implementing deep learning to the steganography algorithm. However, conventional steganalysis is no longer effective for deep learning based steganography algorithms. Our framework is the first one to disturb covert communications and transactions via the recent deep learning-based steganography algorithms. We first extract a sophisticated pixel distribution of the potential stego image from the auto-regressive model induced by deep learning. Using the extracted pixel distributions, we detect whether an image is the stego or not at the pixel level. Each pixel value is adjusted as required and the adjustment induces an effective removal of the secret image. Because the decoding method of deep learning-based steganography algorithms is approximate (lossy), which is different from the conventional steganography, we propose a new quantitative metric that is more suitable for measuring the accurate effect. We evaluate our method using three public benchmarks in comparison with a conventional steganalysis method and show up to a 20% improvement in terms of decoding rate.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.