Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Virtual Adversarial Training on Graph Convolutional Networks in Node Classification (1902.11045v2)

Published 28 Feb 2019 in cs.LG and stat.ML

Abstract: The effectiveness of Graph Convolutional Networks (GCNs) has been demonstrated in a wide range of graph-based machine learning tasks. However, the update of parameters in GCNs is only from labeled nodes, lacking the utilization of unlabeled data. In this paper, we apply Virtual Adversarial Training (VAT), an adversarial regularization method based on both labeled and unlabeled data, on the supervised loss of GCN to enhance its generalization performance. By imposing virtually adversarial smoothness on the posterior distribution in semi-supervised learning, VAT yields improvement on the Symmetrical Laplacian Smoothness of GCNs. In addition, due to the difference of property in features, we perturb virtual adversarial perturbations on sparse and dense features, resulting in GCN Sparse VAT (GCNSVAT) and GCN Dense VAT (GCNDVAT) algorithms, respectively. Extensive experiments verify the effectiveness of our two methods across different training sizes. Our work paves the way towards better understanding the direction of improvement on GCNs in the future.

Citations (24)

Summary

We haven't generated a summary for this paper yet.