Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

What you get is not always what you see: pitfalls in solar array assessment using overhead imagery (1902.10895v2)

Published 28 Feb 2019 in cs.CV

Abstract: Effective integration planning for small, distributed solar photovoltaic (PV) arrays into electric power grids requires access to high quality data: the location and power capacity of individual solar PV arrays. Unfortunately, national databases of small-scale solar PV do not exist; those that do are limited in their spatial resolution, typically aggregated up to state or national levels. While several promising approaches for solar PV detection have been published, strategies for evaluating the performance of these models are often highly heterogeneous from study to study. The resulting comparison of these methods for practical applications for energy assessments becomes challenging and may imply that the reported performance evaluations are overly optimistic. The heterogeneity comes in many forms, each of which we explore in this work: the level of spatial aggregation, the validation of ground truth, inconsistencies in the training and validation datasets, and the degree of diversity of the locations and sensors from which the training and validation data originate. For each, we discuss emerging practices from the literature to address them or suggest directions of future research. As part of our investigation, we evaluate solar PV identification performance in two large regions. Our findings suggest that traditional performance evaluation of the automated identification of solar PV from satellite imagery may be optimistic due to common limitations in the validation process. The takeaways from this work are intended to inform and catalyze the large-scale practical application of automated solar PV assessment techniques by energy researchers and professionals.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube