Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved algorithms for Correlation Clustering with local objectives (1902.10829v2)

Published 27 Feb 2019 in cs.DS

Abstract: Correlation Clustering is a powerful graph partitioning model that aims to cluster items based on the notion of similarity between items. An instance of the Correlation Clustering problem consists of a graph $G$ (not necessarily complete) whose edges are labeled by a binary classifier as similar'' anddissimilar''. An objective which has received a lot of attention in literature is that of minimizing the number of disagreements: an edge is in disagreement if it is a similar'' edge and is present across clusters or if it is adissimilar'' edge and is present within a cluster. Define the disagreements vector to be an $n$ dimensional vector indexed by the vertices, where the $v$-th index is the number of disagreements at vertex $v$. Recently, Puleo and Milenkovic (ICML '16) initiated the study of the Correlation Clustering framework in which the objectives were more general functions of the disagreements vector. In this paper, we study algorithms for minimizing $\ell_q$ norms $(q \geq 1)$ of the disagreements vector for both arbitrary and complete graphs. We present the first known algorithm for minimizing the $\ell_q$ norm of the disagreements vector on arbitrary graphs and also provide an improved algorithm for minimizing the $\ell_q$ norm $(q \geq 1)$ of the disagreements vector on complete graphs. We also study an alternate cluster-wise local objective introduced by Ahmadi, Khuller and Saha (IPCO '19), which aims to minimize the maximum number of disagreements associated with a cluster. We also present an improved ($2 + \varepsilon$) approximation algorithm for this objective. Finally, we compliment our algorithmic results for minimizing the $\ell_q$ norm of the disagreements vector with some hardness results.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com