Papers
Topics
Authors
Recent
2000 character limit reached

Alternating Synthetic and Real Gradients for Neural Language Modeling (1902.10630v2)

Published 27 Feb 2019 in cs.LG and cs.NE

Abstract: Training recurrent neural networks (RNNs) with backpropagation through time (BPTT) has known drawbacks such as being difficult to capture longterm dependencies in sequences. Successful alternatives to BPTT have not yet been discovered. Recently, BP with synthetic gradients by a decoupled neural interface module has been proposed to replace BPTT for training RNNs. On the other hand, it has been shown that the representations learned with synthetic and real gradients are different though they are functionally identical. In this project, we explore ways of combining synthetic and real gradients with application to neural language modeling tasks. Empirically, we demonstrate the effectiveness of alternating training with synthetic and real gradients after periodic warm restarts on language modeling tasks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.