Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 149 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Viable Dependency Parsing as Sequence Labeling (1902.10505v2)

Published 27 Feb 2019 in cs.CL and cs.LG

Abstract: We recast dependency parsing as a sequence labeling problem, exploring several encodings of dependency trees as labels. While dependency parsing by means of sequence labeling had been attempted in existing work, results suggested that the technique was impractical. We show instead that with a conventional BiLSTM-based model it is possible to obtain fast and accurate parsers. These parsers are conceptually simple, not needing traditional parsing algorithms or auxiliary structures. However, experiments on the PTB and a sample of UD treebanks show that they provide a good speed-accuracy tradeoff, with results competitive with more complex approaches.

Citations (66)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.